
  

  

Abstract—Every year,  solid  waste  generates  over  1.5  
billion  metric  tons  of  CO2  equivalent  greenhouse  gases, 
making it one of the major causes of global warming. While 
significant effort has been expended in educating the public 
about the benefits of recycling, errors arising from human 
confusion at the point of disposal result in both missed 
opportunities for recycling as well as expensive contamination 
that can cause entire recycling bins to end up in a landfill. In 
this work, we demonstrate the efficacy of deep learning, 
available at the point of disposal within a mobile app, for 
accurate and instantaneous waste classification. Our application, 
DeepWaste, achieves an overall accuracy of 92.0% with an F-1 
score of 92.1%. We show the effectiveness of our model by 
benchmarking it against human waste classification 
performance where DeepWaste outperforms the average human 
accuracy by nearly 50% while performing in real-time. We also 
provide results from a System Usability Scale (SUS) test where 
the DeepWaste mobile app achieves a score of 81/100, earning 
an A grade and adjective rank of “Excellent” in the SUS scale. 

I. INTRODUCTION 

 Climate change is described as one of the greatest 
challenges of the 21st century [1]. Across numerous scientific 
studies, it has been shown that greenhouse gas (GHG) 
emissions caused by human activities have warmed the 
climate at a an unprecedented rate since the Industrial 
Revolution. The Intergovernmental Panel on Climate Change 
(IPCC), a UN body for assessing science related to climate 
change, projects that to avoid catastrophic and irreversible 
climate change, global warming needs to be limited to 1.5°C 
rise from pre-industrial levels. The latest IPCC report update 
released in August 2021 states that climate change is 
happening at an even faster rate than previously understood, 
and that currently under all scenarios of carbon emissions, the 
threshold of 1.5°C is very likely to be exceeded latest by 2040, 
and potentially as early as by the end of this decade unless 
drastic emission reductions measures are enacted soon.   

Accurate waste disposal plays an important role in 
reducing GHG emissions. Every year, the world generates 
over 2 billion tons of solid waste [2]. This waste generates 
over 1.5 billion metric tons of CO2  equivalent greenhouse 
gases [2], contributing nearly as much to climate change as all 
the cars on the U.S. roads. Solid waste also includes 
significant embodied GHG emissions. For example, most of 
the GHG emissions associated with paper occur before it 
becomes waste [3]. Therefore, encouraging waste 
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minimization through recycling programs can have significant 
up-stream GHG minimization benefits. In the U.S., even 
though 75% of this waste is capable of being recycled, only 
34% is actually recycled [4]. Further, 91% of plastic isn’t 
recycled [5] and only about 5% of food and other organic 
waste is composted [6].  

Despite massive investment to educate the public about 
accurate waste disposal, efforts so far have been only 
moderately successful. People are often confused by what they 
can recycle, or compost. Signs and boards found near waste 
bins are difficult to understand and are often incomplete. 
Furthermore, disposal of waste varies based on the local 
recycling facilities’ capabilities, and therefore rules for 
disposal are subject to change on a county-by-county basis. 

Errors in waste disposal are not only missed opportunities 
to recycle or compost, but also lead to the contamination of 
recycling and compost bins. Often, an entire bin can end up at 
a landfill due to a single error leading to contamination of the 
whole bin. According to industry estimates, human confusion 
in the identification and correct disposal of waste into our 
waste bins results in nearly 25% of recyclables getting 
contaminated [7], diverting materials that could be recycled 
into landfills. When a recyclable or compostable material ends 
up in the landfill, it releases methane, a greenhouse gas that is 
twenty one times more potent than CO2 in contributing to 
global warming over a 100-year timescale. 

In this work, we present DeepWaste, the first mobile 
application targeted at the problem of erroneous waste 
disposal, available right at the point of disposal. DeepWaste 
leverages recent breakthroughs in convolution neural 
networks (CNNs) for image-recognition tasks [8] and the 
availability of increased computational power in everyday cell 
phones, to provide a novel approach for waste identification 
that is fast, low-cost, and accurate for anyone, anywhere. In 
this paper, we present experimental results showing the 
accuracy of the DeepWaste model which provides a 
significant improvement over previously published research. 
In addition, we benchmark the performance of DeepWaste 
against the accuracy and speed of human waste classification 
on a unique and diverse set of previously unseen waste images 
and show that DeepWaste significantly outperforms average 
human accuracy by over 50% and is also significantly faster. 
Finally, we evaluate the human-computer-interface efficacy of 
our application by running a statistical user evaluation with a 
random group of DeepWaste users to calculate System 
Usability Scale (SUS) score where the DeepWaste mobile 
application achieves a score of 81/100, earning the grade of A 
and adjective rank of “Excellent” within the scale.   

The rest of the paper is organized as follows: Section 2 
covers the related work in applying AI methods to the problem 
of waste classification. Section 3 describes the methodology 
used in this work. Section 3.1 discusses the deep learning  
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model used for DeepWaste and discusses various techniques 
applied to achieve the high accuracy.Section 3.2 describes the 
methodology used to benchmark human accuracy and Section 
3.3 describes the setup for calculating the SUS usability score. 
Section 4 covers the results for the DeepWaste model. Section 
4.1 provides accuracy metrics including precision, recall, F-1 
scores, Receiver Operating Curve and Confusion Matrix 
across the test set. Section 4.2 provides the results of 
comparing DeepWaste against human classification and 
shows that DeepWaste outperforms average human accuracy. 
Section 4.3 provides the results for the SUS usability test and 
some feedback from users on the application. Section 5 
provides a summary and direction for future work. 

II. LITERATURE REVIEW 

The topic of applying machine learning (ML) or artificial 
intelligence (AI) for waste classification has recently begun to 
garner considerable research interest. One of the earliest 
attempts to use AI for waste classification was Thung et al [13] 
and Awe et al [14]. Their model, TrashNet, used R-CNN 
technique to classify waste into three categories: recycle, 
landfill, and paper. The algorithm achieved accuracy of 68%, 
demonstrating the promise of using artificial intelligence for 
the problem of waste classification. Another attempt to use 
deep learning was RecycleNet proposed by Bircanoglu et al 
[15]. The authors experimented with several well-known 
CNN architectures and achieved the highest accuracy of 95% 
using a DenseNet model. However, the authors noted the 
performance of this model was too slow to be used in a 
real-time classification context. They proposed a new 
architecture, RecycleNet, which achieves an overall accuracy 
of 81%. More recently, Adedji et al [33] describe a model in 
which a CNN based ResNet-50 model is used for 
classification except that the last layer is replaced  with a 
mult-class Support Vector Machine based classification to 
achieve overall accuracy of 87%. Another recent is described 
by Sai et al [38] which is similar to [15] where a DenseNet 
model achieves 92% overall accuracy. While the model 
performs well for Cardboard (98%) and Paper (90%), it has 
low accuracy for Glass (82%), Metals (80%), Plastics (83%), 
and Trash (68%), and is not suitable to be used within a mobile 
device due to the large model size. A novel hybrid approach 
for image detection was proposed by Chu et al [34] where they 
proposed a new hardware to use not only the images but other 
sensory inputs such as sound and smell to improve waste 
classification. While they report an overall accuracy of 98%, 
the results were demonstrated on a small data set of 50 images 
and the images had to be placed in a very specific way for their 
specialized hardware to correctly capture the sensory inputs.   

There are several other attempts to use AI within a ‘smart 
bin’ or an industrial grade binning system located at a 
recycling plant [9], [10], [11], and [12]. This approach 
requires expensive hardware that costs thousands of dollars, 
thus deterring their wide-spread adoption. In addition, as these 
smart bin based hardware solutions are typically deployed at a 
recycling center, it is too late to prevent bin contamination that 
happens at the point of disposal. Our approach with 
DeepWaste is novel as it uses widely available smartphones,  

and therefore has the potential for large-scale adoption at little 
or no cost. DeepWaste’s ubiquitous and easy access also 
allows its use right at the time of disposal to prevent errors, 
thus lowering the probability of bin contamination.  

There is some previous work related to waste classification 
in embedded systems, but it has generally required specialized 
hardware built for this purpose, and none of these approaches 
in the literature describe a system for classification that is 
available on a smartphone. In [16] authors describe using 
SSD-MobileNet embedded on a Raspberry Pi 4 to classify 
plastic bottles, glass bottles, and metal cans achieving 
accuracies of 95%, 82% and 86% respectively. Another 
attempt to create a system available at the point of disposal 
was Auto-Trash, which required a Raspberry Pi 4 based 
attachment to the garbage disposal can. No accuracy results 
were published on this. In [35], Mittal et al describe a 
smartphone app, SpotGarbage, however the purpose of this 
app is not waste classification. The app is designed as a way 
for citizens to take pictures and easily geo-tag and report 
garbage for civic purposes. In [36], authors describe 
ThanosNet, a system to collect images along with metadata 
fields such as location and traffic. However, no results of 
waste classification are reported. More recently, White et al 
[39] describe WasteNet, a smart bin for waste classification in 
a non peer-reviewed arXiv submission where they claim to 
achieve 97% accuracy. However, no details of the model are 
provided and the proposed methodology uses specialized 
hardware in the smart bin context. On searching through 
AppStore, authors were able to find only one other application 
that uses AI for waste classification, Waste Classifier [40]. 
This application provides classification into various categories 
of recycling, paper and organic waste. However no references 
were provided on the modeling approach used or accuracy of 
the results on any benchmark data set for this application.  

In addition to the high accuracy and widespread 
availability, DeepWaste is the first model in the literature, to 
the best of our knowledge, that considers compost as a new 
category for waste classification. Misclassification of 
compostable material is particularly harmful for the 
environment because when compostable material such as food 
scraps and green waste are diverted into a landfill, it is 
compacted down and covered. This removes the oxygen and 
causes it to break down in an anaerobic process. Eventually, 
this releases methane, a greenhouse gas that is 25 times more 
potent than carbon dioxide in warming the earth over a 
100-year timescale (and more than 80 times on a 20-year 
timescale) [17].  

Another important contribution of this research is to 
establish a baseline accuracy for human waste classification. 
To the best of our knowledge, our work provides the first 
quantitative study comparing DeepWaste to overall human 
accuracy, by conducting a blind accuracy benchmark and 
comparing AI-based classification to humans. We also 
perform a SUS usability survey for the DeepWaste mobile app 
to demonstrate its applicability as a practical tool for everyday  

III. METHODS 

Classifying waste using AI is a challenging problem for a 
number of reasons. First, whether a waste item is recyclable, 
compostable or trash depends on the properties of the material 



  

which can be hard to detect simply from the image. Second, 
materials can come in any shape or size such as a broken bottle 
or a crumpled can; any image processing technique needs to 
be able to deal with this variation. The two primary Research 
Questions (RQ) we sought to study were the following: 

RQ1: Can we utilize the recent advances in artificial 
intelligence for image recognition to develop a model to 
classify waste items with high accuracy and generalizability? 

 

RQ2: Can we then embed such a model into a smartphone 
via an app and by using the increased computational power of 
these everyday devices provide an accurate, low-cost, fast and 
universally accessible classifier at the point of disposal? 

Figure 1 summarizes the pipeline to create the DeepWaste 
mobile application. 

 
Figure 1: DeepWaste mobile application pipeline 

 

Data Collection: Since there was no publicly available 
dataset, a significant part of this research was to first collect a 
dataset from scratch by collecting images from our local 
neighborhood. Towards this goal, we implemented user-based 
model training capabilities so that users can easily take a 
picture, label it, and upload it to the cloud on Amazon Web 
Service (AWS) for on-demand model training. In total, we 
manually collected 1218 images at various lightings and 
angles: 396 images compostable item(s), 427 images 
recyclable item(s), and 395 images landfill item(s). Figure 2 
shows some sample images from our dataset. To ensure each 
image in the dataset was labeled accurately, we verified the 
correct classification through our local waste provider. 

 
Figure 2: Sample images from DeepWaste dataset. 

 

Data Augmentation: On this dataset, prior to training the 
model, we apply aggressive data augmentation to each input 
image. Data augmentation is used to improve the 
generalizability and accuracy of our model by matching 
real-world noise of consumer images; while each waste item 
can be identified by its unique properties, such as its shape 
and size, each user image item may vary in terms of size, 
illumination, blur, and background depending on how a given 
individual takes the image from their smartphone. To address 
this challenge, each input image was rotated with an angle 
randomly selected among 0, 90, 180, and 270 degrees and 
cropped, sheared, and blurred.  
 

Model: Utilizing this dataset, we develop our deep 
learning neural network model called DeepWaste. Neural 
Networks are inspired by how the brain works and consists of 
a series of processing nodes organized as a hierarchy of 
layers, each simple in its operation, but collectively the 
overall network is able to implicitly ‘learn’ complex 
relationships between inputs and outputs that are not easy to 
model by other more traditional computational methods. In 
this study, we select a specific type of neural network 
architecture called a convolutional neural network (CNN) 
that has been highly successful in image classification and 
recognition problems in a wide range of settings. CNNs 
achieve this performance by exploiting features from local 
structures in an image and aggregating the local features to 
make a prediction on the full image.  

We experimented with a number of different 
state-of-the-art CNN architectures including InceptionV3 
[18] , Inception ResnetV2 [19], MobileNet [20], PNASnet 
[21], and Resnet50 [22]. Based on the results, we selected 
Resnet50 as our model’s backbone. The Resnet50 network is 
a variant of the ResNet architecture and contains 48 
Convolution layers along with 1 MaxPool and 1 Average 
Pool layer. Our full dataset is used to train the model and then 
a balanced test set consisting of 100 real-world images (34 
trash, 33 recycle, 33 compost), entirely new to the model, are 
used to evaluate the performance of the model. Then 
advantage of this architecture over other types of CNN 
architectures is it allows for training of very deep networks by 
introducing a residual block into the network that prevents the 
gradient from 'vanishing' or 'exploding' during training [23]. 
To the ResNet50 network, we added an additional ‘attention 
layer’ [24] before the final FC layer. This attention layer is 
traditionally used in sequence-to-sequence tasks, but here we 
use the attention mechanism to identify the most 
discriminative features that distinguish between images, and 
make the algorithm pay more attention to these more 
discriminative local regions of an image, thereby improving 
the classification accuracy of the model in complex scenes. 
We use this approach because of the large variance in the 
same subcategory of images in our dataset and the small 
variance among different subcategories.  

 
Training: As part of our preprocessing step during 

training, each of the images in the dataset are resized to 224 
by 224 pixels to fit the input of our model. All of our dataset is 
used to train the model and then a test set consisting of 100 
real-world images (34 trash, 33 recycle, 33 compost), entirely 
new to the model, are used to evaluate the performance of the 
model. The training process consists of iteratively updating 
the parameters to decrease the prediction error. The 
prediction error is computed by comparing the network’s 
prediction to the actual classifications from the dataset. 

Typically, to train such deep CNN networks, huge data sets 
with millions of images are required to get acceptable 
accuracy. A small dataset, such as in our case, could cause a 
network to overfit, or not be able to sufficiently generalize. 
To overcome this challenge, we utilize a technique called 
transfer learning  [25] to initialize our models from weights 
pre-trained on the 2014 ImageNet Large Scale Visual 



  

Recognition Challenge dataset, which consists of around 1.3 
million images and 1000 object classes. Transfer learning 
leverages the previously learned low-level features such as 
lines, edges, and curves. Since these low-level features are 
common to any image classification task, transfer learning 
requires significantly less data to achieve high accuracy. 
After initializing our model with pre-trained weights, we 
freeze the hidden layers of our model and add a final fully 
connected (FC) layer to our CNN to speed up model training.  

 
This model is then trained using a differential learning rate 

for 40 epochs with early termination if convergence is 
detected sooner. A differential learning rate allows different 
parts of the network to train at different rates, speeding up the 
overall training process. We use a dropout rate of 0.2 in the 
final FC layer. Dropout is a regularization technique that 
drops out a percentage of the layer from activating and thus 
reduces the overfitting of our neural network model. The final 
layer of the network feeds into a SoftMax layer that takes the 
output of the network, and for a given input image assigns a 
probability between 0 and 1 of that image belonging to a 
particular category. The model selects the category with the 
highest probability as the classification label and provides the 
user the probability value. All layers of the network are 
trained using the Adam optimizer [26] with a learning rate of 
1e-3. Adam is an extension of the optimization algorithm 
called stochastic gradient descent (SGD) that iteratively 
updates the weights of a network based on the training loss to 
improve the overall model performance. The final network 
has a total of 23, 516, 228 learnable parameters. We use an 
open-source deep learning framework called PyTorch to 
develop all of our models. 
 
3.1: Evaluating DeepWaste Accuracy against Human 
Classification accuracy  
 

In addition to benchmarking the accuracy, precision, recall, 
and F-1 scores for DeepWaste on a test set, we also establish a 
baseline for average human classification accuracy and 
benchmark DeepWaste against human classification by 
testing both humans and DeepWaste on a previously unseen 
data set by the algorithm. To the best of our knowledge, this is 
the first such quantitative study establishing the baseline for 
human waste classification accuracy. As part of our 
benchmark, our goal was to investigate the following research 
questions.  

 
RQ3: Can we establish a benchmark for the accuracy and 

speed of human-based waste classification on a diverse set of 
real-world waste images?       

 
RQ4: Can an AI-based model for waste classification 

outperform human-based classification with high 
confidence?    

        
RQ5: What items do humans commonly get confused by 

and how does accuracy vary between the three classes: trash, 
recycle and compost?  

 

To ensure that a robust comparison was established 
between humans and DeepWaste, our images for the survey 
comparison consisted of the same test set images used to 
evaluate the performance of the model. This was a balanced 
set of 100 real-world images, roughly evenly split between 
trash, recycling, and compost classes (34 trash, 33 recycle, 33 
compost), none of which were included in the dataset to train 
the DeepWaste model. To establish a benchmark for 
human-based waste classification, we restricted our sample 
from cities across ZIP codes in the San Francisco Bay Area. 
This was done since regionally recycling rules can vary 
significantly based on facilities’ capabilities, and therefore 
humans’ responses on the survey would vary based on 
respondents’ regional recycling or composting rules. While 
restricting the sample to the SF Bay Area significantly 
reduced local variations in rules, there still existed some small 
differences between counties that needed to be accounted for 
(e.g., black colored plastic needed to be thrown into the trash 
in some Bay Area counties while in other Bay Area counties it 
could be recycled). To ensure that our survey accounted for 
such local variations, all images were carefully verified with 
each local municipalities’ rules; items where local variations 
in rules affected the classification were removed from the 
survey until we achieved a survey set that worked for all Bay 
Area counties. 

Our survey was developed using QualtricsTM, and 
participants were sampled using a convenience sample 
through Amazon Mechanical Turk (AMC), a crowd-sourcing 
platform to perform on-demand tasks. Our survey was 
administered from May 2021 to June 2021, resulting in 73 
valid responses. The goal of the survey was to benchmark 
human-based accuracy of waste classification and measure 
convergence and divergence between humans’ classification 
on specific items. Respondents’ answers were completely 
anonymous and no identifiable information, such as their 
name, age, email address, phone number etc., was collected. 
Prior to beginning the survey, respondents were provided 
brief instructions, and then once started, respondents were 
asked to classify each of the 100 images in the survey into 
either recycling, compost, or trash. Associated with each 
image was a title of the item as well as important information 
that would affect the respondent’s response such as whether 
the item was clean, unused, or dirty. Respondents were not 
allowed to return back to or skip questions and the order of 
images presented to each respondent was randomized. While 
respondents had unlimited time to complete the survey, we 
recorded the time the respondent took to finish the survey. 

 
3.2: Evaluating DeepWaste User Experience 
 
In addition to accuracy testing, we also conducted a 

usability study of our mobile application by running a 
statistical user experience evaluation. We conducted a blind 
System Usability Scale (SUS) test with a random group of 
DeepWaste users. A SUS test is a quick and straightforward 
10 item Likert scale  that assesses the subjective opinion from 
a user regarding the usability of a particular system [27]. SUS 
is one of the most widely used usability tests which has 
shown across a variety of studies that it can reliably measure 



  

the perceived usability of a system by sampling a relatively 
small number of users as in our case [28]. Additionally, as 
compared to other types of statistical user experience 
evaluations, a SUS test is simple and quick, and only asks for 
users’ reactions after using the system (e.g. if they found the 
system complex or easy-to-use) instead of asking for the user 
to assess specific features of the system (e.g. the visual 
appearance and organization of the system). 

RQ6: Can we assess the ease-of-use of our application, 
how confident users feel in our application, and how likely 
they are to use our application in the future?    

 
We developed our survey using Qualtrics to provide 

instructions and record responses for the SUS test. In total, we 
had 20 user responses. Participants were randomly sampled 
using a convenience sample through AMC and the sample 
was restricted to individuals who lived in California and had 
an iOS device. Participants were also individuals who had 
never used the DeepWaste mobile app previously. Prior to 
completing the SUS test, participants were asked to download 
DeepWaste from the App Store and use it for at least 2-3 
minutes by classifying items near them. Once finished using 
the app, participants were asked to immediately evaluate the 
app by filling out the SUS test. The test consisted of 10 
statements that covered a variety of aspects of system 
usability, such as the complexity of the app and if they would 
use the app frequently, and asked users to choose a value from 
0 (strongly disagreeing with the statement) to 5 (strongly 
agreeing with the statement) on a Likert scale. We adapted the 
traditional SUS test slightly by adding a question after 
participants had already finished completing the scale for 
them to provide written feedback about their experience using 
DeepWaste. This was done to check if users’ feedback 
corresponded to their SUS score. To calculate the SUS score, 
we used the standard SUS calculation (For items 1,3,5,7, and 
9,  we subtracted the users’ scale position by 1. For items 
2,4,6,8, and 10, the score is 5 minus the original scale 
position. After applying this procedure, the item’s score 
contribution ranges from 0 to 4. We then summed the 
converted score contribution and multiplied the score by 2.5. 
The final SUS score ranges from 0 to 100). While the final 
SUS score ranges from 0 to 100, it is not a percentage. To 
interpret our score, we translate our final SUS score to a 
percentile score from [29], and an “adjective rank” and “letter 
grade” from [30]  

 

IV. RESULTS 

4.1: Can our AI model achieve high accuracy for waste 
classification? (RQ1) 

 
Out of the various CNNs we benchmarked on the dataset in 

the DeepWaste, Resnet50 showed the best accuracy and 
convergence on the test set in terms of average precision. We 
then added an additional layer to the Resnet50 backbone 
architecture called an attention correction layer which 
improved classification performance by an additional 5%. 
The final DeepWaste model achieves an average precision 
score (arithmetic mean of the precision and recall score) of 

0.920 and an F1 score (harmonic mean of the precision and 
recall score) of 0.921 (Table 1). 

 
Accuracy InceptionV3 MobileNet PNASNet Resnet50 DeepWaste 
Trash 0.771 0.751 0.722 0.761 0.927 
Recycle 0.891 0.949 0.864 0.924 0.921 
Compost 0.806 0.873 0.841 0.882 0.919 
Overall 0.84 0.842 0.852 0.811 0.920 

Table 1: DeepWaste performance on test set 
We measured the accuracy of our classifier using a variant 

of a traditional Receiver Operating Characteristic Area Under 
the Curve (AUC-ROC) designed for multiclass classification. 
The ROC-AUC score is an evaluation metric for classifiers 
that consider the false positive rate (proportion of the positive 
class incorrectly classified by the model) and true positive 
rate (proportion of the positive class that got correctly 
classified). A classifier with an AUC = 1 is able to perfectly 
distinguish between all the Positive and the Negative class 
points; an AUC = 0.5 is a classifier that cannot distinguish 
between Positive and Negative class points, i.e., the classifier 
is predicting randomly. Figure 4 shows the ROC curves from 
our best performing model. DeepWaste achieves a high AUC 
on all three classes: an AUC = 0.963 for the recycling class, 
an AUC = 0.965 for the trash class, and AUC = 0.905 for the 
compost class. We also generate a confusion matrix of 
DeepWaste results on the test set to visualize how well our 
model predicted against the actual annotations of compost, 
trash, and recycle (Figure 4). 

 

  
Figure 3: ROC curves for DeepWaste model on test set 



  

 
Figure 4: confusion matrix of DeepWaste model on test set 

 
4.2: Can we embed an optimized DeepWaste model into a 
smartphone via an app? (RQ2)} 
 

DeepWaste was then optimized and subsequently deployed 
inside of a mobile application using Apple CoreML. CoreML 
optimizes on-device performance by leveraging the CPU, 
GPU, and Neural Engine while minimizing its memory 
footprint and power consumption. DeepWaste model is 
running strictly on the user’s mobile device, therefore 
removing the need for internet connection and sharing data. 
We designed an easy-to-use mobile app interface for users 
using Swift 4 programming language and Xcode 
environment. Figure 5 shows the DeepWaste app classifying 
commonly confused items in real-life. A user can simply 
point their phone camera to any piece of waste and get 
instantaneous feedback, with an average prediction time of 
around 100ms. DeepWaste is able to correctly identify items 
with high accuracy, even when the shape has been deformed 
such as a crushed soda can, orange peels, an apple core, 
crumpled paper, and a plastic bag. Note that the plastic bag in 
Figure 5 is classified as trash because plastic bags, films, and 
wraps cannot be recycled in your curbside recycling bin; they 
must be dropped-off to a special retail store that can collect 
plastic grocery bags for recycling. Throwing this plastic bag 
into the recycling bin has the potential of contaminating the 
entire bin. The DeepWaste model can be retrained and 
personalized to account for different local rules. 

 

 
Figure 5: DeepWaste app classification output 

 

4.3: Can we establish a benchmark for human-based 
waste classification? (RQ3) 
 

We randomly sampled 73 respondents in the Bay Area. To 
ensure that a robust comparison was established between 
humans and DeepWaste, we asked them to classify the same 
set of 100 waste items (34 trash, 33 recycle, 33 compost) from 
our test set. The mean human accuracy achieved on the 
benchmark was 61.36% (95% Confidence Interval between 
57.7% to 65%), with the minimum score achieved on our 
benchmark = 28% and the maximum score achieved on our 
benchmark = 89%, with a deviation of 16.06 (Table 2). 

While respondents had unlimited time to complete the 
survey, we recorded the total time it took them to complete 
the survey from start to finish. Table 3 shows the mean time 
individuals took to complete the survey as well as the 
maximum and minimum time spent to complete the survey. It 
is important to note that there was no causal relationship 
found between the time taken by the user and their accuracy 
score. Someone who has taken longer will not necessarily 
have higher accuracy as evidenced by the fact that the 
individual who took the minimum amount of time had 74% 
accuracy, while the individual who took the maximum 
amount of time had 63% accuracy. 

 

 
 
4.4: Can DeepWaste outperform human-based 

classification? (RQ4) 
 
Comparing the human classification accuracy and speed 

against DeepWaste, the current DeepWaste model 
outperforms the average human, best performing human, and 
worst performing human, with a high confidence margin, on 
each accuracy metric including the average accuracy, F1 
Score, and Precision and Recall Score. (Table 4).  
 
 DeepWaste Average 

Human 
Maximum 
Human 

Minimum 
Human 

Average 
Accuracy 

0.92 0.61 0.89 0.28 

F1 Score 0.921 0.627 0.889 0.22 
Precision 
Score 

0.927 0.677 0.90 0.187 

Recall Score 0.919 0.641 0.889 0.279 

Table 5: DeepWaste vs Maximum Human Score vs 
Minimum Human Score vs Average Human Score 

 



  

4.5: What items do humans commonly confuse? (RQ5)} 
 
Figure 7 shows the average human accuracy for each of the 

100 items. The average human accuracy of classification for 
each category (recycle, trash, and compost) is shown in 
comparison with DeepWaste accuracy in Table 5. 

 

 
 DeepWaste Average 

Human 
Recycle 0.921 0.778 

Trash 0.927 0.492 
Compost 0.919 0.555 

 
Table 5: DeepWaste vs Average Human Accuracy in each category 
 
Overall, based on the results the human accuracy is highest on 
average for Recycle and lowest for Trash.  This disparity 
between human accuracy on the recycling and trash classes 
indicate that many users are taking waste items and 
incorrectly classifying them as recyclables. For example, the 
sweater (which is trash) about ~50% of humans classified it 
as recyclable and ~18% of humans classified it as Compost, 
while only ~32% of humans classified it correctly as Trash. 
False positives for recycling is a particularly important point 
as this indicates potential contamination of the entire 
recyclable bin. Another interesting observation is that 
DeepWaste was able to differentiate between items that look 
similar but have different material properties better than the 
average human. For example, the survey included three 
different types of egg cartons: one that is plastic (recyclable), 
another that is cardboard (recyclable), and third that is 
styrofoam (trash). DeepWaste correctly classified all three of 
these while the majority of individuals selected recyclable for 
all three egg cartons.  
 
4.6: How do users feel while using our application? (RQ6) 
 
In the usability survey of a group of 20 users, randomly 
selected using AWS Mechanical Turk service, DeepWaste 
achieved an SUS score of 81.00 which translates to around 
the top 10% of scores as shown in Figure 8. As an adjective 
rank, DeepWaste’s SUS score translates to “Excellent” and as 
a grade the SUS score is equal to an A.  The histograms in 
Figure 9 below summarizes the “Letter Grade” and Adjective 

Rank distribution based on the SUS test results from each 
user. Figure 10 shows the average response for each of the 10 
questions along with standard deviation for each.  
 

 
 
 

V. CONCLUSION AND FUTURE WORK 
 
In this work, we have developed DeepWaste, an easy-to-use 
mobile application that utilizes highly-optimized deep 
learning techniques to provide fast, accurate, and low-cost 
waste classification. DeepWaste is one of the first mobile 
waste classification solutions that is universally accessible at 
the point of disposal, for anyone with a smartphone, to 
mitigate climate impact. DeepWaste achieves overall 
accuracy of 92.0% and an F-1 score of 92.1%, making it one 
of the highest accuracy results reported in the literature. We 
also perform a robust comparison between DeepWaste and 
human accuracy on a diverse set of waste images, 
establishing the first such benchmark to measure average 
human accuracy on waste classification. DeepWaste 
outperforms the mean human classification accuracy by 
nearly 50% while  being  able to classify these images in near 
real-time and significantly faster than humans taking the 
survey. Finally, we also show the human-computer efficacy 
of DeepWaste by conducting a SUS usability study in which 
DeepWaste achieves a score in the top 10 percentile. The 
DeepWaste mobile app is available to the general public on 
the App Store and is being piloted at several school and 
university campuses. We hope our work can reduce the 
amount of incorrect waste disposal, and over time raise more 
awareness around the impacts of waste on our climate. If 
DeepWaste can even reduce erroneous waste disposal by 1%, 
it will be equivalent to removing over 6.5 million 
gasoline-burning vehicles from the road, making this a 
promising application of AI to tackle challenge of climate 
change. 
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